On the Black-Box Complexity of
Optimally-Fair Coin Tossing

Dana Dachman-Soled!, Yehuda Lindell?, Mohammad Mahmoody?, and Tal
Malkin®

! Columbia University
{dglasner, tal}@cs.columbia.edu
2 Bar-Ilan University
lindell@macs.biu.ac.il
3 Cornell University
mohammad@cs.cornell.edu

Abstract. A fair two-party coin tossing protocol is one in which both
parties output the same bit that is almost uniformly distributed (i.e., it
equals 0 and 1 with probability that is at most negligibly far from one
half). It is well known that it is smpossible to achieve fair coin tossing
even in the presence of fail-stop adversaries (Cleve, FOCS 1986). In fact,
Cleve showed that for every coin tossing protocol running for r rounds,
an efficient fail-stop adversary can bias the output by £2(1/r). Since this
is the best possible, a protocol that limits the bias of any adversary to
O(1/r) is called optimally-fair. The only optimally-fair protocol that is
known to exist relies on the existence of oblivious transfer, because it
uses general secure computation (Moran, Naor and Segev, TCC 2009).
However, it is possible to achieve a bias of O(1/4/r) in r rounds relying
only on the assumption that there exist one-way functions. In this paper
we show that it is impossible to achieve optimally-fair coin tossing via
a black-box construction from one-way functions for r that is less than
O(n/logn), where n is the input/output length of the one-way function
used. An important corollary of this is that it is impossible to construct
an optimally-fair coin tossing protocol via a black-box construction from
one-way functions whose round complexity is independent of the security
parameter n determining the security of the one-way function being used.
Informally speaking, the main ingredient of our proof is to eliminate
the random-oracle from “secure” protocols with “low round-complexity”
and simulate the protocol securely against semi-honest adversaries in the
plain model. We believe our simulation lemma to be of broader interest.

Keywords: black-box separations, coin tossing, optimally-fair coin toss-
ing, round-complexity, lower-bound.

1 Introduction

We study the fundamental problem of (two-party) coin tossing, where two mu-
tually distrustful parties wish to generate a common random bit. Ideally, this

bit should be almost completely unbiased (namely be equal to 1 with probabil-
ity that is at most negligibly far from 1/2). Furthermore, by the definition of
a secure coin tossing protocol, if the two parties follow the protocol then they
must both output the same random bit. Unfortunately, however, as shown in a
classic result by Cleve [c86], if one of the parties may deviate from the proto-
col (even if the deviation is only “fail-stop” meaning that the adversary merely
aborts early), then secure coin tossing cannot be achieved. In fact, Cleve proved
that for any coin tossing protocol running for r rounds there exists an efficient
fail-stop adversary that can bias the resulting bit by at least £2(1/7).

On the positive side, an early result by Blum [B82] uses one-way functions to
construct a coin tossing protocol in a weaker model, where an unbiased output
is achieved if both parties complete the protocol, but if a malicious party aborts
early, the honest party does not output any bit. This protocol was used by
Cleve [¢86] to construct a coin tossing protocol that runs for r rounds and for
which no efficient adversary can bias the output bit by more than O(1//7)
assuming that one-way functions exist.?

This gap between the lower and upper bounds in [c86] remained open for
more than two decades. Recently, it was closed by Moran et al. [MNS09], who
constructed a protocol for coin tossing that matches the lower-bound of [c86].
Specifically, they constructed an O(r)-round protocol with the property that no
adversary can bias the output by more than O(1/r). Thus, they demonstrated
that the £2(1/r) lower-bound is tight. We call such a protocol optimally-fair
because no protocol can achieve lower bias.

Interestingly, the protocol of [MNS09] uses general secure computation and
thus requires the assumption that oblivious transfer exists (or any assumption
implying it, like enhanced trapdoor permutations). In contrast, the coin tossing
protocol of Blum [B82] and the protocol of [c86] achieving bias of O(1/+/7)
can be constructed from any one-way function. This disparity was observed
by [MNs09] who state: “A challenging problem is to either achieve the optimal
bias based on seemingly weaker assumptions (e.g., one-way functions), or to
demonstrate that oblivious transfer is in fact essential.”

In this paper we take a step toward answering this question, and show that
one-way functions are not sufficient for achieving optimally-fair coin tossing via
black-boz reductions when the number of rounds r is o(n/logn) for security
parameter n (i.e., the input/output length of the one-way function). We note
that the protocols mentioned above of [c86,MNS09] are indeed black-box

Theorem 1 (Main Theorem, Informal). Let IT be a black-boz construction
for two-party optimally-fair coin tossing based on one-way functions with input
and output length n. Then the number of rounds r of interaction in I is at least
r = 2(n/logn).

4 Essentially, this protocol works by running Blum’s protocol r times sequentially and
outputting the bit that appeared in most executions. (If one of the parties halts
prematurely, then the other party takes locally chosen uniformly distributed bits as
the output bits for the remaining Blum executions.)

In fact, we prove something even stronger: — Stronger primitives. The
same result holds even if the primitive used in the construction is an exponentially-
hard one-way function or an exponentially hard collision resistant hash function
h:{0,1}" = {0,1}%(™ (or in fact any primitive which can be derived in a black-
box manner from a random oracle). The result holds also for more structured
primitives such as one-way permutation. The latter extension is based on the
simple observation that a random function and a random permutation can not
be distinguished with “few” queries asked by the construction. We refer the
reader for the full proof of these extensions to the full version of the paper.
— Optimality of the bias. The same result holds even when II achieves any
o(1/4/r) bias (not only for optimally-fair protocols with a bias of O(1/r)).

Our main technical lemma in order to prove Theorem 1 is to show how
to remove random oracles from certain secure protocols in the random oracle
models which we believe to be of independent interest.

Lemma 1 (Simulation Lemma, Informal). Let II be a two-party protocol
in the random oracle model in which the parties query a (random) oracle of
input/output length n, ask a total of m = poly(n) queries and communicate for
o(n/logn) rounds. Then there are two protocols: ITg (the extended protocol) and
II7 (the threshold-simulation protocol) such that the following holds. (a) In IIg
the parties act as IT but the ask up to 2°0") extra queries from the oracle. (b) Iy
is performed in the plain model without the random oracle. (c) The joint views of
the parties in ITg and Il are A-close for an arbitrary parameter A = 1/ poly(n).

The high level structure of the proof of Theorem 1 is to use the simulation
lemma and the result of [c193] which breaks any coin-tossing protocol in the
plain model with “few” rounds. See Section 1.1 for more details.

We also observe that our simulation lemma can be used to derive impossibility
results in the context of secure two-party computation of non-trivial functions.
Kushilevits [K92] classified the finite functions that have perfectly secure two-
party protocols against semi-honest adversaries and called them “decomposable
functions”. Maji, Prabhakaran and Rosoulek [MPR0O9] extended this result to
the regime of statistical security and showed that only decomposable functions
can have (randomized) two-party protocols which are statistically secure against
semi-honest parties. The latter result together with our simulation lemma imply
that if a function is not decomposable, it can not have a black-box secure protocol
based on one-way function (or based on the other primitives mentioned above)
with o(n/logn) rounds of communication. The steps of the proof of this result
are very similar to the case of coin-tossing described in Theorem 1. See Section
1.1 for more details and see the full version of the paper for the complete proof.

Discussion and Implications. Our lower-bound proves that either there is no
black-box construction of optimally-fair coin tossing from any of the primitives
mentioned in Theorem 2, or if there is any such construction it will suffer from
an almost linear {2(n) lower-bound on its round-complexity (which arguably is
the main efficiency measure) depending on the security parameter of the primi-
tive used. Such a construction, where the number of rounds, and thus the bias,

depends on the security parameter, seems counter-intuitive (yet see the compar-
ison below with statistically hiding commitments which do have constructions
with the number of rounds depending on the security parameter).

In particular, our negative result implies that the use of oblivious transfer (as
an assumption stronger than one-way function) in the construction of [MNSQ9],
achieving O(1/r) bias for any r, is inherent. Moreover, the construction of [c86],
using commitments (that can be constructed in a black-box way from one-way
functions) and achieving O(1/4/r) bias for any r, is actually optimal (as Theo-
rem 2 holds for any o(1/4/r) bias).

It is also interesting to contrast our lower bound with the original impossi-
bility result of Cleve [c86]. One way to view the result of [086] is as a proof that
in order to achieve O(1/r) bias any protocol must have at least £2(r) rounds of
interaction. Our lower bound then says that it is only possible to achieve O(1/r)
bias with r rounds when relying on one-way functions (or any of the primitives
mentioned in Theorem 2) for r = £2(n/logn) which is very large. In particular, it
is not possible to construct a protocol (using a black-box reduction) whose round
efficiency depends only on the desired bias and is independent of the security
parameter n used to determine the input length to the one-way function. This
has the ramification that increasing the security parameter in order to obtain a
stronger guarantee of invertibility of the one-way function (to get a more secure
protocol) has an effect also on the round complexity of the protocol.

Black-Box Separations. One of the main goals of modern cryptography has been
to identify the minimal assumptions necessary to construct secure cryptographic
primitives. For example, [Y82,6M84,R90,HILLI9,GGM86,LR88,IL89Y,NY89,N91] have
shown that private key encryption, pseudorandom generators, pseudorandom
functions and permutations, bit commitment, and digital signatures exist if and
only if one-way functions exist. On the other hand, some cryptographic prim-
itives such as public key encryption, oblivious transfer, and key agreement are
not known to be equivalent to one way functions. Thus, it is natural to ask
whether the existence of one-way functions implies these primitives. However, it
seems unclear how to formalize such a question; since it is widely believed that
both one-way functions and public key encryption exist, this would imply in a
trivial logical sense that the existence of one-way functions implies the existence
of public key encryption. Thus, we can only hope to rule out restricted types
of constructions that are commonly used to prove implications in cryptogra-
phy. Impagliazzo and Rudich [TR89] were the first to develop a technique to rule
out the existence of an important class of reductions between primitives known
as black-box reductions. Intuitively, this is a reduction where the primitive is
treated as an oracle or a “black-box”. There are actually several flavors of black-
box reductions (fully black-box, semi black-box and weakly black-box [RTVO04]).
In our work, we only deal with fully black-box reduction, and so we will focus
on this notion here. Informally, a fully black-box reduction from a primitive Q
to a primitive P is a pair of oracle PPT Turing machines (G, S) such that the
following two properties hold:

Correctness: For every implementation f of primitive P, g = G7 implements Q.
Security: For every implementation f of primitive P, and every adversary A,
if A breaks G/ (as an implementation of Q) then S4f breaks f. (Thus, if f is

“secure”, then so is G/.)

We remark that an implementation of a primitive is any specific scheme that
meets the requirements of that primitive (e.g., an implementation of a public-
key encryption scheme provides samplability of key pairs, encryption with the
public-key, and decryption with the private key). Correctness thus states that
when G is given oracle access to any valid implementation of P, the result is
a valid implementation of Q. Furthermore, security states that any adversary
breaking G/ yields an adversary breaking f. The reduction here is fully black-
box in the sense that the adversary S breaking f uses A in a black-box manner.

Comparison to Similar Lower-Bounds on the Round-Complexity. The only simi-
lar lower-bound on the round-complexity of black-box constructions that we are
aware of is the result of Haitner, Hoch, Reingold, and Segev [HHRS07] which deals
with the round-efficiency of statistically hiding commitment schemes. Interest-
ingly, our lower-bound is exactly the same as that of [HHRS07] which also is based
on the security parameter of the one-way function used in the construction . It
seems that the techniques used in [HHRS07] and our techniques explained below
are quite different. This raises the question of whether there are more connec-
tions between the two results. For instance, is it possible to simplify any of these
arguments using ideas from the other work? More importantly, this suggests
the intriguing possibility that perhaps a positive solution for optimally-fair coin
tossing from one-way functions can be achieved with O(n/logn) rounds, using
the techniques which are used in constructing the positive results of O(n/logn)-
round statistically hiding commitments [NOVY98,HRO7,HNO " 09)].

1.1 Our Technique

We recall a result of Cleve and Impagliazzo [c193] which shows that for any coin
tossing protocol with r rounds, there exists a computationally unbounded adver-
sary who can achieve bias of at least £2(1/+/r). Moreover, this adversary follows
the protocol as specified, except that it may abort prematurely; as such the
adversary is fail-stop. We show that a black-box construction of an o(n/logn)-
round coin tossing from own-way functions with input/output length n (or in
fact any primitive which is implied by a random-function in a black-box way)
will essentially suffer from the same attack of [c193] and thus cannot guarantee
any bias below 2(1/4/r) through a black-box proof of security.

We start by assuming that there is a black-box construction IT of optimally-
fair coin tossing from one-way function with r = o(n/logn) rounds. A random
function is one-way with overwhelming probability, so informally speaking, if we
feed the construction IT with a random function it should still be an optimally-
fair coin tossing protocol. In fact, something stronger happens when a construc-
tion based on one-way function is fed with a random function: Such a construc-
tion will now be secure even against computationally unbounded adversaries who

are allowed to ask 2°(") oracle queries to the random oracle. The reason for this is
that if there were such an adversary, then the security reduction will imply that
there is an adversary inverting a random function with 2°(™ number of queries
(see the proof of Theorem 2 for more details) which is not possible. We will take
advantage of this stronger property to derive the contradiction by presenting
a 2°(M_query attack whenever the round complexity is o(n/logn). The idea of
feeding a black-box construction with a random-function and enhancing its se-
curity, and then deriving contradiction by a simple counting argument (rather
than refuting the relativizing reductions [IR89]—which is a much harder task)
is also employed in previous works such as [cGKT05,BM07].

Our main technical step will be to show that the round-complexity of o(n/logn)
for the black-box construction of coin tossing implies the existence of a 2°(")-
query adversary who is able to bias the output bit by w(1/r). In fact we show
how to achieve bias £2(1/+/r) = w(1/r). The existence of such an attack implies
the result because by the security reduction the ability to bias the protocol yields
an adversary inverting the one-way function. Our 2°")_query attacker runs the
protocol (of the corresponding party) honestly except that it gathers more infor-
mation about the random oracle along the execution of the protocol by asking
poly(n,)" (which is 2°") for r = o(n/logn)) more queries and achieves bias of
22(1/+/r) by deciding to stop at some point during the protocol.

We shall emphasize that the reason that we can not directly use the attack
of [c193] in the presence of a random oracle is that, even conditioned on the
transcript of the interaction, the random oracle builds dependencies between the
views of Alice and Bob. However the attack of [c193] essentially uses the fact
that conditioned on the transcript the views of Alice and Bob are independent
in a plain protocol (where no random oracle is used). Thus we need to find a
way to “kill” this dependency to be able to use their attack.

Our 2°(")_query attacker uses special properties of an attack given by Barak
and Mahmoody [BMO09] to break any key-agreement protocol with an optimal
number of queries to the random oracle. The attacker of [BM09]—which here we
call the “independence learning algorithm”, or the simply the learning algorithm
for short—gets as input a threshold parameter € which controls its efficiency
and accuracy at the same time. Roughly speaking if Alice and Bob ask m oracle
queries in their execution, it will lead to O(m/e) queries asked by the learner
and the error of me. This learning algorithm can be described more naturally
as an online algorithm which learns certain oracle queries during the interaction
between Alice and Bob (despite the fact that passive adversaries can always
wait till the end of the interaction). Our attacker uses this learning algorithm
internally and feeds it with different values for the threshold parameter e for
each round; the parameter ¢ taken grows exponentially with the round numbers.
Due to the heavy use of the threshold parameter of the learning algorithm in
our attack, we call it the “threshold attacker” TA. Note that since the learning
algorithm only requires the knowledge of the public transcripts, both Alice and
Bob can run the learning algorithm in any two-party protocol (e.g., a coin tossing
protocol rather than a key-agreement protocol). Thus our threshold attacker

TA, which is in fact executed by either Alice or Bob, can also run the learning
algorithm during the coin tossing protocol.

The Threshold Attacker—More Details. For an arbitrary two-party protocol IT
in the random oracle model (or any other oracle model) we can think of “curious”
parties who run the protocol honestly but will ask more oracle queries along
their execution of the protocol®. We use the terminology of [GIMs10] and call
such a game a curious extension of the original protocol II. To get the threshold
attacker, Alice or Bob (whoever is performing the attack) will need to play a
curious extension of the original protocol by asking up to 2°(™ oracle queries.
Here we will only deal with an extension based on the learning algorithm of
[BM09]. That is, the attacking party runs the learning algorithm along the honest
execution of the original coin-tossing protocol and decides to abort prematurely.
We let the parties take turn in simulating the learning algorithm in the following
way: Whenever Alice (or Bob) is sending a message w;, they attach to it the set
of query/answer pairs that the learning algorithm would learn after w; is sent
across the channel. For brevity we call this specific curious extension in which
both Alice and Bob run the learning algorithm along the original game (and
attach the learner’s view of each round to their messages) simply “the extended
execution” of the original protocol (without referring to the learning algorithm
explicitly). We show how our threshold attacker can perform their attack in the
extended execution.

We prove that the extended protocol has the interesting property that now
Alice and Bob can in fact “simulate” the random oracle on their own (using their
private randomness) in a way that their views are statistically close to those in
the execution of the original extended game in the random oracle model. To
perform the simulation, Alice and Bob will answer their queries to the random
oracle using fresh randomness unless they have asked this query at some point
before (and thus chose the answer already) or that they are told by the other
party what the answer to this query should be (through the extra messages
simulating the learner’s view).

To prove that the above simple simulation is indeed a statistically-close simu-
lation of the extension game we need to show that (unless with small probability)
there is no inconsistencies between the oracle answers chosen by Alice and Bob
for their oracle queries. Here we crucially use the fact that the learning algorithm
provides enough information along the game so that Alice and Bob will always
choose consistent oracle answers for their queries. Suppose that Alice is sending
a message w; and is also attaching a list of k = m/e; simulated learning queries
to the message w; where ¢; is the learner’s threshold used in round i by Alice and
m is the total number of queries in the original protocol. For any query ¢ among
these k queries which are being asked by Alice from the random oracle (and thus
being simulated) for the first time, we want that ¢ is not among Bob’s “private”

® This is slightly different from the semi-honest parties who run the protocol hon-
estly without asking more oracle queries and only later analyze their view of the
interaction.

queries which was simulated at some point before (yet is not announced through
the learner’s simulation). The learner’s algorithm has the property that if Bob
uses threshold ¢;_;1 to simulate the learner in the previous round ¢ — 1 then
any such query ¢ has chance of at most ;-1 to be a “private” query of Bob.
Therefore, by a union bound, the probability that any of these k queries cause
an inconsistency is at most = ke;_1 = me,;_1/¢;. By taking ¢;,_; < &;/m, we can
control the probability of such event to be arbitrary small. This clarifies why we
end up using exponentially smaller thresholds for smaller rounds.

Finally, since we could simulate the extended execution through a plain pro-
tocol, we can use the inefficient attack of [0193], which can be applied to any
plain protocol and apply it to the simulation of the extension game. Since the
extended execution and its simulation are statistically close experiments, we
conclude that almost the same bias would be achieved by the attacker in the
extension execution with only 2°(") queries and so we are done.

A Parallel Work. The threshold simulation technique was discovered indepen-
dently in a parallel work by Maji and Prabhakaran [MP10] in the context of
using random oracle for the aim of achieving statistically secure protocols.

2 Definitions and Useful Lemmas

Definition 1 (coin tossing from one-way function). For (interactive) ora-
cle algorithms A, B we call IT = (A, B) a black-box construction of coin tossing
with bias at most & based on exponentially-hard one-way functions with security
parameter n, if the following properties hold:

— A and B have their own private randomness Ra, Rg. They take as input 1™
and run in time poly(n) and interact for r(n) = poly(n) number of rounds.

— Completeness: For any function f: {0,1}" — {0,1}", when A and B
are given oracle access to f, then at the end of the protocol A’s output a
and B’s output b are such that a = b and b is considered the output of the
protocol. Also if during the protocol A (resp., B) receives the special message
1 (denoting that the other party has stopped playing in the protocol) then A
(resp., B) outputs a bit a (resp b) on their own which is considered as the
output of the protocol.

— Security (against bias 0): There is an oracle algorithm S running in time
2°(0) with the following property. For any f: {0,1}* — {0,1}" given as
oracle, Zf;{ (resp., E) 18 a malicious interactive algorithm interacting with
B (resp., A) which makes the output bit b to be §(n)-biased, then S©4 (given
oracle access to f and 2) breaks the security of f (as an exponentially-hard
one-way function).

We denote by (alb) + <2, B) (resp. (alb) + <A,§)) the joint output of A and

~

B (resp. A and E} generated by an interaction of A and B (resp. A and E)

The proof of the following two lemmas can be verified by inspection.

Lemma 2 (Inverting Random Functions). Let A be a computationally un-
bounded oracle algorithm given oracle access to a random function f: {0,1}" —
{0,1}™ (the randomness of [is chosen after A is fixed). Then if A asks at most
29" queries from [, the probability that A can successfully invert a given input
y = f(Uy,) (to any preimage of y) is at most 2-2(*=1" 127" which is negligible
for any constant o < 1.

Lemma 3 (Inverting Random Functions with a Fixed Subdomain). Let
S c {0,1}™ be of size |S| < 28™ for B < 1, and let fs: S + {0,1}" be a fived
function. Let F be the set of all functions f: {0,1}™ — {0, 1}"™ which are equal to
fs over S. Now, let A be a computationally unbounded oracle algorithm which
can depend on fs and is given oracle access to a random function f < F (the
randomness of f is chosen after A is fived). Then if A asks at most 2°™ queries
from f, the probability that A can successfully invert a given input y = f(Uy)
(to any preimage of y) is at most 2- (2(¢=Dn 4 2(8=Dn) L 9= which is negligible
for any constants a < 1 and 5 < 1.

3 Simulation Lemma

In this section, we present a general lemma that holds for any two-party protocol
in the random oracle model. This lemma will be useful for proving our result on
coin tossing, but also has applications to general two-party computation as we
describe below.

Lemma 4 (Simulation Lemma). Let IT be a two-party protocol between Alice
and Bob in the random oracle model where they ask at most m oracle queries
and interact for v rounds. Then there exist protocols I and Iy called the \-
threshold simulation and A-extended execution of II such that the views of Alice
and Bob (as a jointly distributed random variable) in It and g are \-close.
Moreover, the following properties hold:

— IIT makes no oracle queries.

— For A = 1/poly(n), r = o(n/logn) and m = poly(n), IIg makes at most
20(n) queries.

— Let W = [wi ... w!] be the sequence of messages sent between Alice and
Bob so far in an execution of protocol II relative to oracle f with random
tapes Ra, Rp respectively. For A\ = 1/poly(n), r = o(n/logn) and m =
poly(n), both Alice and/or Bob can make at most 2°™) queries and produce
the transcript W1e = [w{jE, . ,wlﬂE} that is generated by an execution of
the protocol IIg relative to oracle f with random tapes R, Rp.

The above lemma implies the following corollary:

Corollary 1. Let p = 1/poly(n) and let Q be some two-party cryptographic
task such that for every implementation Il,q:n in the plain model with r =
o(n/logn) rounds, there is a computationally-unbounded, semi-honest adversary

which breaks the security of Ilpqin with probability p. Let II be a black-box con-
struction of Q with r rounds based on exponentially-hard one-way functions with
security parameter n (i.e. the input/output length of f). Then r = £2(n/logn).

The corollary follows from Lemma 4 due to the following: Assume such a con-
struction IT exists with r = o(n/log n) rounds. Now consider I, the A-threshold
simulation of IT. Since ITr also has r = o(n/logn) rounds and does not make
calls to the oracle, we have by hypothesis that there is an unbounded attacker
A (resp. B) which breaks the security of IIr with probability p = 1/ poly(n).
Now, for A < p/2 = 1/ poly(n), we have that the views of Alice and Bob (as a
jointly distributed random variable) in ITr and in the A-extended exection, I,
are A-close. Moreover, given the transcript generated by IT, Alice (resp. Bob)
can make at most 2°(") queries and produce the corresponding transcript of I1z.
Thus, there is a threshold attacker TA which plays the part of Alice (resp. Bob)
in IT, makes at most 2°"™) queries to compute the messages of ITg, runs A (resp.
B) internally while simulating the view of A (resp. B) using the A-close view
produced by ITg and finally outputs whatever A (resp. E) outputs. So TA breaks
the security of IIg (and thus of IT) with probability p/2, where the probability
is computed over the randomness of f. Having the threshold attacker TA the
proof can be concluded as follows:

(a) Since the attacker TA breaks security with probability p/2 = 1/ poly(n),
by an averaging argument, for at least p/4 fraction of the functions f: {0,1}" —
{0,1}™, the attacker TA’ breaks security with probability p/4. We call such
function f, a good function. (b) Using the security reduction S, for all good
functions f, SHTAY inverts y = f(U,) with probability at least 2°(™). (c) We
can combine the algorithms S and TA to get a single oracle algorithm T which
inverts f(U,,) with probability 2~ (") when f is a good function by asking only
2°(") queries to f. Which means that in this case T asks only 2°(") oracle queries
and inverts a random f with probability at least p/4- 2-0(n) = g—o(n) (because f
is a good function with probability at least p/4). The latter contradicts Lemma 2.

Before we prove Lemma 4, we review relevant previous work.

The Independence Learner of [BM09/. Here we describe the properties of the
attacker of Barak and Mahmoody [BM09] presented in the context of breaking
any key agreement protocol with optimal number of queries to the random oracle.
Since the main property of the learning algorithm is that conditioned on the
learner’s information Alice and Bob’s views are almost independent, we call this
attack the independence learning algorithm.

Lemma 5 (The Independence Learner of [BM09]). Let X' be any two-party
protocol in the random oracle model (with arbitrary number of rounds) between
Alice and Bob in which Alice and Bob ask at most m queries from the ran-
dom oracle H. Then there is a universal constant ¢ and a (computationally un-
bounded) independence learning algorithm which is given a parameter £ (called
the threshold) as input and has the following properties. For brevity we denote
the independence learning algorithm by Fve.

— Fve only has access the public messages sent between Alice and Bob and can
ask queries from the random oracle.

— (em/e)-Efficiency: Eve is deterministic and, over the randomness of the
oracle and Alice and Bob’s private randomness, the expected number of Fve
queries from the oracle H is at most cm/e.

— Fve asks its queries along the game. Namely, although Fve can wait till the
end and then ask all of her queries, her description defines which queries to
be asked right after each message is sent across the public channel. So the
learning algorithm is divided into the same number of rounds as the protocol.

— (ey/me)-Security: Let W = [wy,...,w;] be the sequence of messages sent
between Alice and Bob so far, and let I be the list of oracle query/answer
pairs that Eve has asked till the end of the i’th round, and let AB = (A, B)
be the joint distribution over the views of Alice and Bob only conditioned
on (W,I). By A and B we refer to the projections of AB over its first or
second components (referring to the view of either Alice or Bob only) as
random variables. For a specific view A < A for Alice, by Q(A) we refer to
the set of oracle queries that A contains. We also use the notation Q(I) to
refer to the queries denoted in 1.

With probability at least 1—cy/me over the randomness of Alice, Bob, and the
random oracle H the following holds at all moments during the protocol when
Eve is done with_her learning phase in that round: There are independent
distributions A, B such that:
1. The statistical distance between A x B and AB is at most A(K X
B, AB) < ¢/me.
2. For every oracle query q & Q(I), it holds that Pr[q € Q(:&) UQ(E)] <e.

— Robustness. The learning algorithm is robust to the input parameter € in
the following sense. If the parameter € changes in the interval € € [e1,¢€2]
arbitrarily during the learner’s execution (even inside a learning phase of a
specific round), it still preserves O(cm/eq)-efficiency and (c\/me2)-security.

Lemma 5 is implicit in [BM09], and we show how to derive it from the explicit
results of [BM09] in the full version of the paper.

Given a protocol IT, we now describe the A-extended execution, ITg, and the
A-threshold simulation, I17, of II that were mentioned in Lemma 4.

Definition 2 (Extended Execution). Let IT be a two-party protocol between
Alice and Bob in the random oracle model where they ask at most m oracle
queries and interact for r rounds. The extended execution IIg of II gets as input
a parameter X\ and simulates the original protocol II in the random oracle model
as follows.
— Let g, = % . (ﬁf and for j € {r,r—1,...,2} definec;_1 = ¢; - %.
Note that if 1, \,m are < poly(n), then e, = 1/ poly(n) and ¢1 = poly(n)~".
— Now imagine an Eve who runs the independence learner of Lemma 5 and
uses €; as its learning parameter in the learning phase after the i’th round.

— In round i, the party who is sending the message w;, also runs the i’th round
of the learning phase of Eve and attaches to w; the list of all the query/answer
pairs that are the result of this learning algorithm. Note that since FEwve’s
algorithm 1is only depending on the messages being sent and her previous
knowledge about the oracle, the parties are able to do this job.

Definition 3 (Threshold Simulation). Let IT be a two-party protocol between
Alice and Bob in the random oracle model where they ask at most m oracle
queries and interact for r rounds. A threshold simulation Il of II gets as input
a parameter A and simulates the original protocol I plainly as follows.

— The parameters ¢; for i € [r] are defined similar to the extended execution.

— In the i’th round the party who sends the i’th message tries to simulate the
i’th round of the extended execution but without using a random oracle. The
way the simulation is done is as follows: To compute the message w;, suppose
q 1is a query to be asked from the oracle. Now if q is in the set of queries
learned by Eve so far or if ¢ was asked previously by the same party, the
same answer will be returned which was used before. But, if the query q is
new, a fresh random answer will be used. The same is also done to answer
any query that the learning algorithm Eve tries to learn.

The following lemma explains why a threshold simulation is indeed a good
simulation of the extended execution.

Lemma 6 (Properties of the Threshold Simulation). Let IT be a two-
party protocol between Alice and Bob in the random oracle model where they
ask at most m oracle queries and let Il and IIg be in order its \-threshold
simulation and \-extended execution. Then the views of Alice and Bob (as a
jointly distributed random wvariable) in I and I g are A-close.

Proof. 1t is easy to see that the extended execution and the threshold simulation
will be exactly the same games until the following happens: A party, say Alice
sends a message w; along with the simulation of Eve’s i’th round, but one of
these queries (which are asked in this round either for her own protocol or to
simulate Eve) will hit one of Bob’s “private” queries which are not announced
through Eve’s previous simulated query/answers. We show that this “bad” event
happens with probability at most .

Note that by the robustness of the independence learner Eve and by the

choice of the (largest) parameter &, = - - (ﬁ

—)2, Eve’s algorithm remains at
least cy/me = A/(9r) secure in round i. So, except with probability at most
r A/ (9r) = A\/9 we can pretend (as a mental experiment) that at all moments
the security requirement of the learning algorithm holds with probability 1 rather
than 1 — ¢y/me. In the following we show that (up to the bad event mentioned
above which happens with probability at most A/9) the probability that an
“Inconsistency” happens in round ¢ is at most A/(3r), and thus we will be done
by a union bound. By inconsistency we mean that Alice announces (a different)
answer for an oracle query that is privately asked by Bob already (or vice versa).

Suppose Alice is sending the message in the ¢’th round and suppose no in-
consistency has happened so far. Let fix W = [wy, ..., w;_1] to be the sequence
of the messages sent till this moment and let I be the union Eve’s simulated
queries till the end of the (¢ — 1)’th round. An inconsistency in round ¢ can hap-
pen as follows: one of the queries asked by Alice (either to run her own protocol
or to simulate Eve) hits one of Bob’s private queries. We bound this probability
conditioned on any fixed (W, I) over which the security property of the learner
holds (as we said this property will hold with probability at least 1 — A\/9).

As a mental experiment we can continue the game (after fixing (W, I)) by
sampling from the random variable (A, B) < AB for the views of Alice and Bob
so far conditioned on (W,I) and then continue Alice’s simulation. Let assume
for a moment that we sample (A, B) < A x B rather than from AB. We bound
the probability of any inconsistency in the former case to be 2A/(97), and since
the distributions AB and A x B are A /(97) close, it follows that the probability
of any inconsistency in this round is bounded by 2 - A/(97) + A/(97) = A/(3r)
which is small enough for us.

But now we use the security property of the independence learner. Note that
when we get the sample (A, B) < AxB, A and B are sampled independently. So,
we can sample A first, continue Alice’s computation, and then sample B B at
the end (and we will abort if the private queries collide). The number of queries
that Alice will ask to run her own protocol is at most m. By the efficiency
property of the learning algorithm applied to round ¢, the number of Eve’s
simulated queries in this round are, on average, at most ¢m/e;. By a Markov
bound, this number is at most <* - 9 with probability at least 1 — A/(9r). So
except with probability A/(9r) the total number of queries asked by Alice in
this round is at most m +9cmr/(g;X) < 10cmr/(e;)). Note that the probability
that any of these 10cmr/(e;A) queries are among the private queries of a sample
from B (sampled as Bob’s view) is at most €;_1. So, by a union bound, the
probability that at least one of these queries hits B’s private queries is at most

1%‘;&” -gj—1 = A/(9r) and this finishes the proof.

So, all left to do is to count how many queries are asked by our A\-extended
execution ITg and show that it is (say on average) at most 2°("™). This is indeed
the case because of the robustness and the efficiency properties of the learning
algorithm. The smallest threshold used in our attack is €1 = poly(n)~" because
A = 1/r and r = poly(n), m = poly(n). Therefore our attacker asks at most
O(m/e1) number of queries on average which for r = o(n/logn) is at most
O(m/e1) = poly(n)" = 200,

4 Proof of the Main Theorem

In this section we first prove our main theorem for the case of exponentially-
hard one-way function as the primitive used. Extending the proof to stronger
primitives implied by a random oracle is discussed at the end.

Theorem 2 (Main Theorem, Formal). Let IT be a black-box construction
for two-party coin tossing (between Alice and Bob) with bias at most o(1/+/T)
(where T is the number of rounds in II) based on exponentially-hard one-way
functions with security parameter n (i.e., the input/output length of f). Then
r=(n/logn).

Proof. For sake of contradiction let assume that such construction exists with
r = o(n/logn) round complexity. The proof goes through the following steps.
We first feed Alice and Bob’s protocols in the construction II with a random
function f: {0,1}" + {0,1}"™. We show that in that setting at least one of the
parties can ask n°(") queries to f and bias the output by at least £2(1//7) by a
fail-stop attack. The probability over which the bias is computed also includes
the randomness of f. As in Section 3, we call this attacker the threshold attacker,
TA. Having the threshold attacker TA the proof can be concluded as follows.

(a) Since the attacker TA achieves bias § = £2(1/4/r) and since the bias
is always 6 < 1, therefore by an averaging argument, for at least §/2 fraction
of the functions f: {0,1}" — {0,1}", the attacker TA achieves bias at least
0/2 = 2(1/+/r). We call such function f, a good function. (b) Using the security
reduction S, for all good functions f, S*TA” inverts y = f(U,) with probability
at least 27°("). (c) We can combine the algorithms S and TA to get a single
oracle algorithm T/ which inverts f(U,) with probability 27°") when f is a
good function by asking only 2°(™) poly(n)” queries to f. For r = o(n/logn), it
holds that poly(n)" = 2°(") which means that in this case T asks only 2°(") .
20(n) = 20(n) oracle queries and inverts a random f with probability at least
g 270 = 27°(") (because f is a good function with probability at least §/2).
The latter contradicts Lemma 2.

In the following we first describe the results that we borrow or derive from
previous work needed for our threshold attacker TA, and then will describe and
prove the properties of TA.

The Fail Stop Attacker of [c193]. Cleve and Impagliazzo [c193] showed that when
computationally unbounded parties participate in any coin tossing protocol, at
least one of them can bias the output bit by following the protocol honestly and
aborting at some point based on the information provided to them by their view.

Lemma 7 (The Attacker of [C193]). Let X be any two-party protocol for
coin tossing between Alice and Bob with r rounds of interaction. Then either
Alice or Bob can bias the output bit by 2(1/+/r) in the fail-stop model through
a computationally unbounded attack.

4.1 Ouwur Threshold Attacker

In this section we use the attack of Lemma 7 as well as the results of Section 3 to
finish the proof of Theorem 2 by presenting our threshold attacker. We will do
so first in a special case where the protocol IT is of a special form which we call
instant. The case of instant constructions carries the main ideas of the proof.
Later we prove Theorem 2 for constructions which are not necessarily instant.

Definition 4 (Instant Constructions). A black-box construction of coin toss-
ing is an instant construction if whenever a party aborts the protocol, the other
party decides on the output bit without asking any additional queries to its ora-
cle.

We note that the protocol of Cleve [c86] which achieves bias at most O(1/4/7)
based on one-way function is in fact an instant construction.

Given an instant coin-tossing protocol IT, we apply Lemma 4 to obtain the A-
threshold simulation and A-extended execution of IT, II7, IIg. Since the thresh-
old simulation, IIr, is a plain protocol we can apply Lemma 7 to get an attack of
bias 2(1/+/7) by either Alice or Bob. Now if we take the simulation parameter A
to be at most 1/r = o(1/4/r), then the same exact attack will also give a bias of
2(1//r)—o(1/y/r) = 2(1/4/7) in the extended execution. Here we crucially rely
on the instant property because of the following: As soon as Alice or Bob (who
is the attacker) stops continuing the game, the other party in the threshold sim-
ulation will decide on the final output bit by looking at their current view. But
this last step will not be statistically close between the extended execution and
the threshold execution if in the extended execution the deciding party chooses
the output after asking more queries. In other words, if the party who announces
the output bit (not the attacker) wants to ask more oracle queries to compute
the output bit, there should be some simulated random answers chosen by the
corresponding party in the threshold simulation to on behalf of these queries,
but that step is not taken care of by Lemma 6 (because the aborted party is not
given the learning algorithm’s queries for the aborted round). By Lemma 4, our
attacker asks at most 2°(") queries.

Before going over how to handle the non-instant constructions we clarify that
extending Theorem 2 to stronger primitives such as exponentially-hard collision
resistant hash function is immediate. All one has to do is to substitute the
collision resistant hash functions h: {0,1}" ~ {0,1}"/2 used in the construction
by a random function f: {0,1}" + {0,1}™/2 (which is in fact a 2?("-secure
hash function). To provide access to a family of hash functions one can use the
random oracle over larger domains of input/output length 3n and use the first
n bits of the input as the index to the hash family and simply throw away the
last % bits of the output. The rest of the proof remains the same.

Handling Non-instant Constructions It is instructing to recall that given
a random oracle there is indeed a one-round protocol which is optimally-fair:
Alice asks H(0) (assuming that the random oracle is Boolean) and then sends
H(0) to Bob which is the final output bit. If Alice aborts and does not send
H(0), Bob will go ahead and ask H(0) himself and takes that as the final output
bid. It is clear that this trivial protocol is completely fair because H(0) is an
unbiased bit. Also note that the proof of the previous section handing the instant
constructions works just as well for protocols which use a truly random oracle
(rather than a one-way function) as their primitive used. So it should be of
no surprise that the proof of the instant case does not immediately generalize
to cover all the black-box constructions (the trivial coin-tossing protocol based

on random oracle is clearly a non-instant protocol). To handle the non-instant
constructions we inherently need to use the fact that the constructions we deal
with are optimally-fair protocols given any one-way function as the primitive
used. In the following we show how this stronger requirement of the construction
gives us what we need in Theorem 2.

Making constructions almost instant. It is easy to see that any construction for
coin tossing can be changed into an equivalent protocol which is “almost” an
instant one. Namely, whenever a party A is sending a message m, it can also
consider the possibility that the other party B will abort the game right after
A sends his message. So, during the computation of m, A can go ahead and
ask whatever query from the oracle which is needed to compute the final bit in
case B aborts. This way, A will not need to ask any oracle queries in case B
aborts in this round. By doing this change (which clearly does not affect the
security of the protocol) the construction becomes “almost” instant. The point
is that the receiver of the first message can not follow the change suggested here
because they do not send any message before the first round. Therefore, in the
following we only consider constructions which are “almost-instant” (i.e., the
only moment that a party might violate the instant property is when the sender
of the first message aborts the protocol, and the receiver might still need to ask
oracle queries before deciding on the output.)

Handling almost-instant constructions. Suppose II is an almost-instant con-
struction. Suppose IIgp and Il be in order II's extended execution and the
threshold simulation games. The proof of Lemma 6 shows that if no party aborts
the experiments ITp and II; are A-close. The discussion following the proof of
Lemma 6 shows that if one of the parties runs the same fail-stop attack in I1g
and II7 the experiments are still A-close conditioned on the assumption that the
round in which the abort happens is any round other than the first one. So, all
we need to handle is the case in which the sender of the first message (which we
assume to be Alice) aborts the game in the first round (after asking some oracle
queries). In the following we focus on this specific cease.

Note that when aborted in the first round Bob can not simply simulate the
extended execution by using fresh randomness to answer his oracle queries in
order to decide the output bit. If he does so it might not be consistent with
Alice’s queries asked before aborting and thus it will not be a good simulation.®
Despite this issues, if we are somehow magically guaranteed that when aborted
in the first round, none of Bob’s queries to compute the output bit collides with
Alice’s queries asked before, then we can still use fresh random answers to answer
Bob’s queries to compute the output bit.

Suppose after Alice computes her message but right before she sends this
message we run the independence learning algorithm with parameter A/(10m).

5 This will be more clear if one consider the trivial protocol mentioned above which
uses a truly random oracle. If Alice aborts whenever H(0) = 0, and if Bob uses a
fresh random answer whenever he gets aborted by Alice, then the final output will
be equal to 1 with probability 3/4 which is clearly a huge bias!

This learning algorithm will announce a set of O(10m?/\) queries and answers
conditioned on which any other query has a chance of at most A/(10m) of being
asked by Alice in her computation of the first message. Let the set S be the set
of all these O(10m?/)\) queries and let f(S) be their answers. By the security
property of the learning algorithm, conditioned on S and f(S), an aborted Bob
will not ask any query out of S which collides with Alice’s private queries out of
S before aborting (unless with probability at most O(\)).

The idea is to sample the set S and f(S) once for all, and hardwire them
into the random oracle and Alice and Bob’s algorithms. This way, simulating
Bob’s queries with random answers after being aborted will not lead to any
inconsistency with Alice’s queries unless with probability at most O(X). But if
we fixz the answer of such queries that might hurt the protocol’s fairness. At
this point we use the fact that the construction is supposed to be fair given any
one-way function (and not necessarily a random function). Any random oracle is
one-way with overwhelming probability even if we fix a subdomain S C {0,1}",
|S| < poly(n) of its domain and this idea is formalized in Lemma 3. Namely, if
we hardwire the random function over a subdomain S C {0,1}", |S| < poly(n)
we can still use the same exact proof as the case of instant constructions for
Theorem 2 with the only difference that now we will use Lemma 3 rather than
Lemma 2.

Acknowledgement.

We thank the anonymous reviewers for numerous valuable comments.

References

[B82] M. Blum. Coin flipping by telephone - a protocol for solving impossible
problems. In COMPCON, pages 133-137, 1982.

[BMO7] B. Barak and M. Mahmoody. Lower bounds on signatures from symmet-

ric primitives. In FOCS: IEEE Symposium on Foundations of Computer
Science (FOCS), 2007.

[BM09] B. Barak and M. Mahmoody. Merkle puzzles are optimal - an O(n?)-query
attack on any key exchange from a random oracle. In S. Halevi, editor,
CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 374—
390. Springer, 2009.

[c86] R. Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In STOC, pages 364-369, 1986.
[c193] R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and

discrete control processes. Unpublished, 1993.

[cGKTO5] Gennaro, Gertner, Katz, and Trevisan. Bounds on the efficiency of generic
cryptographic constructions. SICOMP: SIAM Journal on Computing, 35,
2005.

[cam86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, 33(4):792-807, 1986.

[GIMS10]

[aMm84]

[HHRSO7]

[HILL99]

[ENOT09]

[HRO7]
[11.89)]
[1R89)]
[K92]
[LR8S]
[MNS09)]

[MP10]
[MPRO9]

[N91]

[NOVY98|

[NY89]
[RI0]
[RTV04]

[Y82]

V. Goyal, Y. Ishai, M. Mahmoody, and A. Sahai. Interactive locking, zero-
knowledge PCPs, and unconditional cryptography. In T. Rabin, editor,
CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 173—
190. Springer, 2010.

S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270-299, 1984.

I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in
interactive protocols - a tight lower bound on the round complexity of
statistically-hiding commitments. In FOCS, pages 669—679, 2007.

J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364-1396,
1999.

1. Haitner, M.-H. Nguyen, S. J. Ong, O. Reingold, and S. Vadhan. Statis-
tically hiding commitments and statistical zero-knowledge arguments from
any one-way function. STAM Journal on Computing, 39(3):1153-1218, 2009.
I. Haitner and O. Reingold. A new interactive hashing theorem. In IEEFE
Conference on Computational Complezity (CCC), 2007.

R. Impagliazzo and M. Luby. One-way functions are essential for complexity
based cryptography (extended abstract). In FOCS, pages 230-235, 1989.
R. Impagliazzo and S. Rudich. Limits on the provable consequences of
one-way permutations. In STOC, pages 44-61, 1989.

E. Kushilevitz. Privacy and communication complexity. SIAM J. Discrete
Math, 5(2):273-284, 1992.

M. Luby and C. Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput., 17(2):373-386, 1988.

T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In TCC;
pages 1-18, 2009.

H. Maji and M. Prabhakaran. Personal communication. 2010.

H. K. Maji, M. Prabhakaran, and M. Rosulek. Complexity of multi-party
computation problems: The case of 2-party symmetric secure function eval-
uation. In O. Reingold, editor, TCC, volume 5444 of Lecture Notes in
Computer Science, pages 256-273. Springer, 2009.

M. Naor. Bit commitment using pseudorandomness. J. Cryptology,
4(2):151-158, 1991.

Naor, Ostrovsky, Venkatesan, and Yung. Perfect zero-knowledge arguments
for NP using any one-way permutation. JCRYPTOL: Journal of Cryptol-
ogy, 11, 1998.

M. Naor and M. Yung. Universal one-way hash functions and their cryp-
tographic applications. In STOC, pages 3343, 1989.

J. Rompel. One-way functions are necessary and sufficient for secure sig-
natures. In STOC, pages 387-394, 1990.

O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between
cryptographic primitives. In TCC, pages 1-20, 2004.

A. C.-C. Yao. Theory and applications of trapdoor functions. In FOCS,
pages 80-91, 1982.

